
TECHNOLOGY MISSION ON

COTTON

MINI MISSION - I

ANNUAL REPORT 2009-10

केन्द्रीय कपास अनुसंधान संस्थान, नागपुर CENTRAL INSTITUTE FOR COTTON RESEARCH, NAGPUR

Published by:

Dr. K. R. Kranthi

Member secretary, TMC MM I

Director

Central Institute for Cotton Research

Post Bag No. 2, Shankarnagar PO, Nagpur 440 010

Edited by:

Dr. A. R. Reddy

Dr. M. V. Venugopalan

Dr. S. M. Palve

Dr. Sandhya kranthi

Dr. Gautam Majumdar

Compiled by:

Dr. A. R. Reddy

Ms. Varsha G. Dhosewan

Hindi translation:

Dr. M. S. Yadav

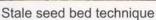
PREFACE

Cotton production this year has been good (240 to 315 lakh bales) for the sixth consecutive year. The record production 300 lakh bales in India, most notably a record 67 lakh bales (170 kg lint/ bale) in Maharashtra under 95% rain-fed conditions, was heartening, despite aberrant and erratic weather conditions. The enhancement in yields has been primarily due to several technological changes that have taken place since 2002, significantly related to the introduction of Bt-cotton, new cotton hybrids, novel pesticides, and the pest management and other crop production technologies developed and disseminated by CICR. It is widely believed that many of the improved varieties developed by the public sector are being used by the private seed industry to develop high yielding commercial hybrids, which have contributed to the enhanced production. The role of farmers, scientists, private sector in introducing Bt-cotton, coupled with the role of Governmental agencies such as the Ministry of Agriculture, Ministry of Science and Technology and ICAR, has been significant in taking cotton production to new heights. The Technology Mission on Cotton Mini Mission MM-1 (TMC-MM-1) played a stellar role in developing and validating several technologies apart from supporting research for the introduction and popularization of Bt-cotton in India. The TMC-MM-1 team of scientists developed package of practices and appropriate strategies to optimize input use and maximize benefits from Bt-cotton. Cotton area increased to more than 100 lakh hectares in India for the first time in history. The recent increase in Minimum Support Price and the prevailing good market price for cotton have contributed to the rise in area and production. The yield increase has been due to efficient and effective technological interventions by the TMC-MM-1 team of scientists. Problems of mealybugs and leaf reddening were being reported from time to time in central India, and the TMC team contributed immensely towards yield enhancement through its research findings that helped in developing remedial measures for the management of mealybugs, leaf reddening, and wilt problems which have recently become a menace, especially reducing yields of Bt-cotton. Recently Monsanto declared that the pink bollworm developed resistance to Bt-cotton Bollgard technology which expresses Cry1Ac toxin from Bt. This has raised several concerns on sustainability. An exhaustive survey was immediately initiated under the TMC-MM-1 programmes to monitor resistance development of several insect pests to insecticides and Bt toxins. New Bt detection kits for new genes such as Cry1C that were released for cultivation in the new Bt cotton events, were developed under the TMC 3.4 project. After the introduction Bt-cotton, the area under Desi (G. arboreum and G. herbaceum) and Egyptian cotton G. barbadense species, has declined significantly. The TMC projects 1.1 and 1.2 have contributed commendably to identify regional constraints and develop appropriate elite fibre varieties suitable for profitable cultivation in specific regions, especially a few varieties also for organic cotton with less need for pesticides and fertilizers. The BNLA106 event of Cry1Ac has been introgressed into some of the best elite varieties. Under the TMC 3.1 and 3.3 projects, several new biological pesticides were developed for mealybug management. A new technology called 'Anacard' was developed for inoculative release of parasites for control of mealybugs. Many implements and devices were developed and patent applications were filed under the TMC projects. The 'solar powered knap sack sprayer' and 'bullock drawn planter' have been commercialized. Research initiatives on the development of cotton picker have been commendable. Molecular diagnostic kits to detect diseases were developed and are being commercialized under the TMC 3.3 project. The socio-economists have carried out detailed studies on the agrarian crisis in Vidharbha and other cotton growing regions of the country and have suggested programmes research approaches that can offer solutions to the crisis. The TMC team has recently initiated steps to refine the INFOCROP cotton crop simulation model for yield gap analysis and regional production forecast. We are confident that the new technologies developed by the TMC MM-1 projects will be validated in the TMC and AICCIP programmes and disseminated through the FLD and TMC-MM-II projects for the continued benefit of the cotton farmer.

(K. R. Kranthi)
Member Secretary, TMC MM-I &
Director, CICR, Nagpur

Recently developed technologies under TMC MM I

CISA 1014



CISA 310

CISA 614

GN.Cot. -25

Organic mulch cum fertilizer applicator

Bullock Drawn Cotton Planter

Power weeder

Solar powered knapsack sprayer

Self propelled weeder

Check row planter

Inter Row Cultivator

Mealy-Quit

CONTENTS

Sr.		Chapter	Page
No.			
1.	कार्यकारी सा	રાંશ	1
2.	Executive Sun	nmary	6
3.	MM 1.1:	Development and promotion of medium and long linted diploid cottons (G. arboreum and G. herbaceum)	10
4.	MM 1.2:	Development of extra long staple <i>G. barbadense</i> cotton with improved fiber qualities to meet requirements of textile industries	17
5.	MM 1.3:	Identification of <i>G. hirsutum</i> genotypes suitable for machine picking and development of agronomic package	23
6.	MM 1.4:	Development and promotion of Bt transgenic cotton for bollworm resistance	27
7.	MM 1.5:	Molecular characterization of cotton germplasm using DNA markers	29
8.	MM 1.6:	Exploitation of apomixis and TGMS systems for hybrid cotton seed production	33
9.	MM 2.1:	Development of production technologies for Bt cotton and improvement of water and nutrient use efficiency with precision farming techniques	38
10.	MM 2.2:	Identification of innovative Bt cotton based cropping systems	44
11.	MM 2.3:	Mechanization of cotton cultivation	46
12.	MM 2.4:	Physiological manipulation of cotton plant morpho frame for enhanced	49
		productivity under varied agro-climatic conditions	
13.	MM 3.1:	Emerging and key pests: their characterization, taxonomy, genetic diversity and control.	52
14.	MM 3.2:	Development and validation of IPM / IRM strategies for Bt	57
		cotton under different eco-systems	
15.	MM 3.3:	Development, validation, utilization and/or commercialization of bio-pesticides and bio-inoculants	60
16.	MM 3.4:	Development of farmer friendly diagnostic kits for transgenic event seed purity	65
17.	MM 4.1:	Quality evaluation of cotton fibres	68
19.	MM 5.1:	Total factor productivity of cotton in India	70
20.	MM 5.2:	Studies on social dynamics of cotton production in distress areas	74
20.	MM 5.3:	Indian cotton portal	76
21.	MM 5.4:	TMC MMI Co-ordination and monitoring cell	78
22.	Annexure I:	Scientists involved in TMC MM-I Projects	80
23.	Annexure II:	Proceedings of Annual Review Workshop (2009-10)	82